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ABSTRACT 
We investigate methods of coding for a channel subject to a large dead-time constraint, i.e. a constraint on the 
minimum spacing between transmitted pulses, with the deep-space optical channel as the motivating example. 
Several constrained codes designed to satisfy the dead-time constraint are considered and compared on the 
basis of throughput, complexity, and decoded error-rate. The performance of an iteratively decoded serial 
concatenation of a modulation code with an outer code is evaluated and shown to provide significant gains over 
Reed-Solomon concatenated with Pulse Position Modulation. 

Keywords: Constrained coding, error-correcting codes, convolutional codes, Reed-Solomon codes, concate- 
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1. INTRODUCTION 
A free-space optical communications system is most efficient when the peak to average power ratio of the signal 
is large [l, 21. These large ratios can be achieved by M-ary Pulse Position Modulation (PPM), in which log, M 
bits choose the location of a single pulsed slot in an M-slot frame. In theory, PPM can lead to an unbounded 
capacity [3], but in practice bandwidth constraints place a limit on capacity [4]. Nevertheless, when no noise is 
present in the system, it has been shown that PPM is near capacity-achieving [l, 51. 

A Q-switched laser works well with the PPM format [6,7], because it can successfully confine a large pulse 
energy to a narrow slot. One side effect of Q-switched lasers, however, is a required delay, or dead-time, between 
pulses during which the laser is recharged. This delay is significant relative to the pulse duration. PPM may 
be modified to satisfy the dead-time constraint by following each frame by a period during which no pulses are 
transmitted. However, this affects the optimality of PPM as a modulation format. 

There are more efficient-measured in throughput, or bits/second-ways to transmit information over a 
channel subject to a dead-time constraint. The problem of signaling efficiently under such a constraint has been 
well studied for applications in magnetic storage, where a similar restriction is imposed to compensate for the 
interference between magnetic media corresponding to closely recorded bits. Efficient signaling is affected by a 
modulation, or constrained, code. The deep-space problem is novel in that the dead-time is very large relative to 
the slot duration-on the order of 256-1024 times the slot duration compared to  1-2 times in magnetic storage 
applications. This report investigates the application of constrained codes to the deep-space optical channel. 

2. PRELIMINARIES 
This article considers the binary-input, real-valued output channel model shown in Fig. 1. Information bits are 
first encoded using an error correcting code. The constrained code then takes the coded bits and further encodes 
them in a way that ensures the laser can physically transmit them, as we explain here. Time is partitioned into 
slots of duration T, during which the laser may either transmit a pulse (a one) or not transmit a pulse (a zero), 
i.e., On-Off Keying (0OK)-see Fig. 2. In unconstrained OOK, a zero or one may appear in any position within 
the sequence of transmitted binary symbols. Q-switched lasers requiring dead-time Td between pulses impose 
the constraint that at least d Ef [T,j/T,] zeros occur between ones. Slot synchronization, typically implemented 
by an early-late gate tracking loop, imposes an additional constraint that no more than Tk seconds may elapse 
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Figure 1: The communications system considered in this article. 

between pulses. In the transmitted binary sequence, this corresponds to the constraint that no more than 
k ef [Tk/T,1 zeros occur between ones. Together, the two constraints are referred to as a ( d ,  k) Constraint and 
the collection of sequences satisfying the constraint as  a ( d ,  k) constrained system. An invertible mapping of 
unconstrained binary sequences into the (d,  k)-system is referred to as a constrained code [8,9]. (Although it 
may be advantageous to violate the dead-time constraint, sending lower SNR pulses at shorter intervals, in this 
work it is assumed the dead-time Td is a hard constraint, Le., pulses must be separated by Td seconds.) The 
constrained code encoder in Fig. 1 makes sure the (d, k) constraint is satisfied. 

At the receiver, light is focused on a detector. Depending on the type of detector used, the detector output 
can be either discrete or continuous. For example, the output of a photon counting detector is the number 
of detected photons, according to a Poisson distribution. In most detectors-including photo-multiplier tubes 
(PMT's), Avalanche Photo-Diode (APD) detectors, and even coherent detectors- the output is a real-valued 
voltage or current that arises from the detector input as well as from random processes within the detector and 
follow-on circuitry. These effects may be modeled in a variety of ways: the Poisson model is often used for 
PMT's, although a more accurate model is known in that case [lo]; a Gaussian, Webb, or Webb plus Gaussian 
model can be used for APD's [ll]; and a Gaussian model is best for a coherent detector. 

Throughout this paper, we shall use a Gaussian model for statistics called the AWGN-1 model [ll], in which 
the slot statistics at the output of the detector are independent and of the form y = s + n, where s E (0 , l )  
is the binary symbol transmitted, and n is zero-mean Gaussian noise with variance a2 = No/2. The symbol 
energy is E, = E[s2] ,  so that E,/No = E[s2]/(2a2) .  When used with a rate R, bits/slot code, E6 = E,/R,, 
and 

We rely on the AWGN-1 channel model and report results as a function of the bit SNR Eb/No due to its 
simplicity, and the fact that all the above mentioned channel models behave in a way that is largely dominated 
by a bit SNR parameter [ll] analogous to &/No. Hence, we expect coding results presented here will apply 
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Figure 2. The optical channel is constrained on-off keying. A one represents a pulsed slot, and a zero a non-pulsed slot. 
There is at least T d  and at most T k  seconds between pulsed slots. 



to a wide variety of channel models, in the sense that the relative coding gains of the various schemes will be 
about the same under different channel models and operating points. 

Throughout this article, we compare the new schemes against a baseline scheme in which, in Fig. 1, the 
error correcting code is a Reed-Solomon code, and the constrained code is PPM with added dead-time. 

3. THROUGHPUT OF THE CONSTRAINED CODE 
Taking the IC constraint as a design parameter, rather than as a hard constraint, we will investigate the achievable 
rates of constrained codes into the (d, 00) constraint. Fig. 3 illustrates a graph presenting the (d, 00) constrained 
system, where 0" denotes a string of z zeros. The system is the set of sequences obtained by reading the labels 
of paths on the graph. The capacity of the ( d ,  00) system when used on an error-free channel, 

Figure 3: Graph presenting the (d, 00) system. 

1 
n+m n 

C(d) !Sf lim - log, lwords of length n in the (d, m) system1 bits/slot, 

is the asymptotic growth rate of the number of distinct words, i.e., finite-length patterns, in the system and the 
least upper bound on the rate of a code into the system. From [12], we have C(d) = ln(X) nats/slot, where X is 
the largest positive root of 

For small d exact solutions may be found efficiently for (2). For large d substitute X = eC(d) and use the 
approximation e-C(d) M 1 - C(d) which yields 

(2) X - ( d + l )  + A-1 - 1 = 0. 

d + 1 M (d + l)C(d)e(dfl)C(d), 

or 
C(d) x W ( d  + ') bits/s, T,(d + 1) ln2 (3) 

where W ( z )  is the productlog function which gives the solution for w in z = we". Table 1 lists capacities for a 
range of d. 

With Rc(d)  denoting the rate of a constrained code C into the (d, 00) system, Ec(d) dgf &(d) /C(d)  is the 
relative efficiency of the code, measuring how close the code rate is to the limit. There are well-known techniques 
to construct codes into a constrained system at rate arbitrarily close to capacity, e.g., [8,9]. However, for our 
parameter range, a straight-forward application of these approaches may be prohibitively complex. In the 
following sections we present some approaches that trade off efficiency and complexity. 

3.1. Pulse position modulation with added dead-time 
First consider the efficiency of what will be considered the baseline, an M-slot PPM frame followed by a d-slot 
dead-time. A graph and tree presenting the allowable PPM code sequences with a dead-time constraint are 
illustrated in Fig. 4. Allowable sequences are read off the graph as described above. Code sequences on the tree 
are generated by traversing the tree. Considering PPM with added dead-time as a (d ,  co) constrained code, the 
rate is 

For a given value of d, substituting the argument M that maximizes R p p ~ ( d ,  M) yields 
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.9375 

.9352 

.9427 

.9435 

Table 1: Capacity of (d, 00) constrained codes and relative efficiencies of some particular schemes 

We allow non-integer M in analysis to simplify expressions, since rounding has a negligible affect on rate for 
large d .  One can show E p p ~ ( d )  -+ 1 as d + co, i.e., PPM achieves capacity in the limit of large d. However, 
for d in our range of interest, significant gains in throughput over PPM are available. 

3.2. Synchronous Variable-Length Codes 
PPM is a fixed-rate code. Allowing a variable rate adds a degree of freedom in design, resulting in higher 
efficiency and/or lower complexity encoders. However, variable rate encoding and decoding has practical draw- 
backs. A compromise is to allow a synchronous rate, namely mappings of mp bits to mq bits, where p, q are fixed, 
positive integers, and m is a positive integer that can vary. Methods of constructing synchronous variable-length 
codes were initially described in [13], and reviews of various approaches may be found in [9,14]. 

We describe a new systematic procedure to construct synchronous encoders and decoders for (d, CQ) con- 
straints. Choose a rate p/q < T , C ( d )  bits/slot. We desire a set of variable-length codewords C = (c1 , c2, . . . , C N }  

such that any sequence formed by freely concatenating the codewords satisfies the constraint, the codeword 
lengths I(ci) are multiples of q, no codeword is the prefix of another (sufficient but not necessary to guarantee 
decodability) , and the collection satisfies the Kraft (1n)equality 
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Figure 4: Graph and tree presenting PPM code sequences. 



Figure 5:  Construction for (d,  k) = ( 1 6 , ~ )  

We can use such a set to construct a synchronous variable-length code mapping unconstrained binary sequences 
into the constraint. 

We detail one method to construct such a set that leads to a low-complexity encoder and decoder. The 
codewords are constructed as nodes on a binary tree. The root of the tree is the pattern O d .  Branches with 
a label 1 are extended with zeros to the first length that is a multiple of q. At this point, the branch label is 
taken as a codeword. The tree is expanded until we have a set of codewords that satisfies (4). Fig. 5 illustrates 
the procedure for the ( d ,  k) = ( 1 6 , ~ )  constraint with p = 1, q = 7. The all zeros pattern is not allowed as a 
codeword, since allowing it reduces the minimum Euclidean distance from 2 to 1, the small gain in throughput 
does not offset the loss in distance (allowing the all zeros codeword does yield significant throughput gains for 
small d ) ,  and a finite k is desired for synchronization. The encoding and decoding may be done at a fixed rate 
by using encoders and decoders with appropriate memory. Codes constructed via this method will be referred 
to as Synchronous Truncated Pulse Position Modulation (STPPM). A simple encoder implementation exists if 
we allow variable-out-degree states. 

This procedure does not allow rates arbitrarily close to capacity. One can show a rate p / q  encoder may be 
constructed via this method into a ( d ,  00) constraint if 

K ( q , d , p )  2 1, 

where 

and 1 = Ld/qJ + 1. A simple encoder/decoder trellis may be constructed if states with variable-out-degrees 
allowed. An encoder with variable-out-degrees states exists with 

are 

states and no more than 
mq + 1 - 1 - d 

edges. Table 2 lists the parameters of a number of codes for a range of d of interest where in each case we take 
p = 1. The encoder/decoder complexity may be traded off for efficiency in a systematic manner by specifying 
a lower rate. There are fewer than q + 1 distinct edge labels in each trellis stage. 
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Table 2: STPPM Variable-out-degree Encoder Parameters 
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The variable-out-degree trellis may also be used without modification to form a maximum-likelihood (ML) 
estimate via, for example, the Viterbi Algorithm. Decisions would be delayed, however typically no longer than 
existing delay due to the truncation depth. On the other hand, certain modifications will be necessary to form 
a maximum a posteriori (MAP) estimate via, for example, the BCJR algorithm. 

3.3. Comparisons 
Fig. 6 illustrates the efficiencies of fixed-orders of PPM and STPPM as a function of d. The PPM order begins 
with 2 and increases in powers of two to 256. The efficiency is measured relative to a (d, co) constraint. However, 
the codes all impose a maximum run-length constraint-necessary for timing recovery and desired for distance 
properties (a fairer measure of efficiency would be relative to the appropriate (d, I C )  constraint). As noted before, 
the efficiencies of the schemes-when allowed to choose optimal order-will approach 1 for large d. Note the 
larger gains over PPM that are possible for smaller values of d, and the dependence of PPM order on d. 

As seen in Fig. 7, the STPPM codes demonstrate throughput (measured in bits per second) gains of 11%- 
17% over PPM. However, this may come at the cost of higher complexity, as seen in Fig. 8, and of reducing 
the number of bits transmitted per pulse. Fig. 9 illustrates the performance of a maximum-likelihood decoded 
STPPM code relative to 8-PPM and 16-PPM for d = 16. The minimum distance of the three codes is the same, 
and the throughput of the PPM schemes are the same, whereas STPPM has a 14% higher throughput. The 
performance is differentiated due to the energy per bit requirements. STPPM transmits an average 3.375 bits 
per pulse whereas 16-PPM transmits 4 bits per pulse-yielding a net gain relative to STPPM of x .74dB-and 
8-PPM transmits 3 bits per pulse-for a net loss relative to STPPM of M .5dB. 
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Figure 6: Relative efficiency of PPM for various orders, and STPPM 
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Figure 8: Complexity 

Any sequences in a (d, m) system may be uniquely parsed into patterns, or phrases, O j l  where j 2 d. The 
phrases O j l  are referred to as run-lengths and their distribution will have an impact on slot-synchronization 
schemes. Fig. 10 illustrates the distribution of run-lengths for 8-PPM, 16-PPMl one implementation of a STPPM 
code, and the capacity-achieving distribution at d = 16. 

4. THE CONSTRAINED CODE IN A CONCATENATED CODING SCHEME 
The larger coding structure will use the constrained code in concert with an Error Correcting Code (ECC). The 
codes will be concatenated serially, as illustrated in Fig. 1. A bit interleaver may be inserted between the codes, 
serving to disperse error bursts in decoding, and providing particular performance improvement in iterative 
decoding schemes. We will use the notation C, + Ci to denote the non-iteratively decoded serial concatenation 
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Figure 10: Runlengths distributions, d = 16 

of outer code C, and inner code Ci. Iteratively decoded codes are denoted by C, H Ci. Iterative decoding follows 
the description in [15]. 

The baseline system is taken to be RS(M - 1, k )  -+ M-PPM, where RS(M - 1, k )  denotes a rate k / ( M  - 1) 
Reed-Solomon code and the PPM demodulator produces hard-decisions. (Here, k does not refer to the runlength 
constraint.) Prior work investigated the system PCCC -+ M-PPM [16], where PCCC is an iteratively decoded 
Parallel Concatenated Convolutional Code and the PPM demodulator produces soft-decisions-although it is 
not included in iterations. Peleg and Shamai [17] investigated the system PCCC t) M-PPM on a discrete-time 
Rayleigh-fading model, illustrating performance 1-2 dB from capacity. 

4.1. Simulation Results 
Fig. 11 illustrates performance under a d = 16 constraint. Uncoded 16-PPM satisfying (d ,  k) = (16,46), a rate 
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Figure 11: BER performance comparisons, d = 16. 

1/7 STPPM code satisfying (d, k )  = (16,32), RS(15,9) 3 16-PPM, CC(3,1/2) +) 16-PPM and CC(3,1/2) +) 

STPPM are illustrated, where CC(3,1/2) is the 4-state convolutional code with generator polynomial g(D)  = 
[1(1+O2)/(1+D+D2)]. The capacity limits for throughput (1/14) bits/slot on a hard and soft-decision channel 
constrained to use a 16-ary orthogonal signal set, e.g., 16-PPM are also illustrated. These curves represent the 
theoretical limits of a channel using 16-PPM with hard and soft decisions, respectively. 

Both CC(3,1/2) tt 16-PPM and CC(3,1/2) tt STPPM used a 512-bit interleaver and 8 iterations. They 
illustrate gains of M 2.5dB over RS(15,9) + 16-PPM at a bit-error-rate of Simulation results demonstrate 
that 4 iterations would be sufficient at the higher values of SNR. A small additional gain of approximately 0.2dB 
was found for a 4096-bit interleaver with CC(3,1/2) +) 16-PPM. Note that CC(3,1/2) +) STPPM has a higher 
throughput (1/14 bits/slot) than CC(3,1/2) +) 16-PPM (1/16 bits/slot). 

Fig. 12 illustrates performance under a d = 1024 constraint. Uncoded 256-PPM satisfying (d,k) = 
(1024,1534), RS(255,128) + 256-PPM1 and CC(3,1/2) +) 256-PPM for two interleaver sizes are illustrated. 
The capacity limits for throughput 1/320 bits/slot on a hard and soft-decision channel constrained to use a 
256-ary orthogonal signal set are also illustrated. CC(3,1/2) tt 256-PPM with a 4096-bit interleaver and 8 iter- 
ations shows gains of 2.3dB over RS(255,128) + 256-PPM at a bit-error-rate of CC(3,1/2) +) 256-PPM 
performs 0.4dB better than any system with the same throughput that uses hard-decision 256-PPM. 

These results are surprising in light of the low-complexity of the constituent codes and lack of recursiveness 
in the inner code. They provide a strong argument for replacing the baseline RS(M - 1, k )  + M-PPM with a 
low-complexity ECC serially-concatenated with PPM or some other constrained code. 

5. CONCLUSIONS/FUTURE WORK 
There are certain trade-offs in replacing PPM with STPPM or another constrained code. The constrained codes 
considered provide higher throughput at the cost of increased complexity. Whether the code gains in energy 
per transmitted bit and run length distribution depends on implemented parameters. 

The gains of the concatenated, iteratively decoded schemes over the baseline RS+PPM are more clear. We 
have illustrated that low-complexity iterative schemes provide significant gains over the baseline. We expect to 
improve on these gains with a better understanding of the interaction between the outer code and constrained 
code. For example, recent results that include an accumulator-a 1/(1 + 0)  mapping-prior to the PPM 
mapping in order to add recursiveness to the mapping have shown significant additional gains for small d. 
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Figure 12: BER performance comparisons, d = 1024. 

We conjecture that the interleaver in the serial concatenated system need only be large enough to distribute 
each bit in the most likely error bursts from the outer code into distinct PPM symbols. We expect that 
interleavers larger than this will show only small improvements. 

The iteratively decoded schemes do, however, rely on statistics from each signal slot. This may be un- 
feasible at the proposed operating rates. Future work will investigate the degradation in performance when 
approximations to complete slot statistics are used. 
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